LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - PHYSICS

FOURTH SEMESTER - APRIL 2023
PPH 4501 - QUANTUM MECHANICS - II

Date: 29-04-2023
Dept. No. \square Max. : 100 Marks
Time: 09:00 AM - 12:00 NOON

PART - A

(10×2 = 20 Marks)

Q. No

Answer ALL questions

1 State the adiabatic theorem with reference to the time dependent perturbation theory.
2 What is dipole approximation?
3 Two particles come towards each other with speed 0.8 c with respect to laboratory. What is their relative speed?
4 A beam of particles of particles of half-life $2 \times 10^{-6} \mathrm{~s}$ travel in the laboratory with the speed 0.96 times the speed of light. How much distance the beam travels before the flux falls to half of its initial flux?

5 What is a hole, with reference to a free Dirac particle?
6 List any two shortcomings of KG equations.
7 Illustrate exchange degeneracy.
8 What is symmetry transformation?
9 Explain the scattering matrix (S-matrix).
10 What do you mean by a normal product?

PART - B
(4 x $7.5=30$ Marks)

Answer any FOUR questions

11 A system in an unperturbed state n is suddenly subjected to a constant perturbation $\mathrm{H}^{\prime}(\mathrm{r})$ which exists during time 0 to t. Find the probability for transition from state n to state k and show that it varies simple harmonically.

12 A π meson of rest mass m decays into a μ meson of mass m_{μ} and a neutron of mass m_{v}. Find the total energy of the μ meson.

Give the energy spectrum of a free Dirac particle and explain pair production and pair annihilation. Prove that the parity of spherical harmonics $Y_{1, m}(\theta, \varphi)$ is $(-1)^{l}$.

Give a thorough description of how a real scalar field is quantized.

16 Calculate the percentage contraction of a rod moving with a velocity 0.8 c in a direction inclined at
60° to its own length.

PART - C

($4 \times 12.5=50$ Marks $)$

Answer any FOUR questions

17 Discuss time-dependent perturbation theory with reference to sinusoidal perturbation and obtain expression for transition probability.

18 Discuss in detail the structure of space time.

19 Starting from the basic energy equation derive the Dirac's relativistic equation for a free particle.

20 (a) Discuss the effect of time reversal in the time-dependent Schrodinger equation. (b) If $\psi_{+}(\mathrm{r})$ and $\psi_{-}(\mathrm{r})$ are the Eigen functions of the parity operator belonging to even and odd eigenstates, show that they are orthogonal.

21 Describe the quantization of a complex scalar field.

22 (a) Discuss the work-energy theorem in relativity. (b) A photon of energy E_{0} bounces off an electron at rest. Find the energy E of the outgoing photon, as a function of the scattering angle θ. $(4.5+8)$

