LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION – **PHYSICS**

FOURTH SEMESTER – APRIL 2023

PPH 4501 – QUANTUM MECHANICS - II

Date: 29-04-2023 Dept. No. Time: 09:00 AM - 12:00 NOON

Max.: 100 Marks

	$\mathbf{PART} - \mathbf{A} \tag{10 x}$	2 = 20 Marks)
Q. No	Answer ALL questions	
1	State the adiabatic theorem with reference to the time dependent perturbation theory.	
2	What is dipole approximation?	
3	Two particles come towards each other with speed 0.8c with respect to laboratory.	What is their

- relative speed? A beam of particles of half-life 2 x 10^{-6} s travel in the laboratory with the speed 0.96 4 times the speed of light. How much distance the beam travels before the flux falls to half of its initial flux?
- What is a hole, with reference to a free Dirac particle? 5
- 6 List any two shortcomings of KG equations.
- 7 Illustrate exchange degeneracy.
- 8 What is symmetry transformation?
- 9 Explain the scattering matrix (S-matrix).
- 10 What do you mean by a normal product?

PART – B

 $(4 \times 7.5 = 30 \text{ Marks})$

Answer any FOUR questions

- A system in an unperturbed state n is suddenly subjected to a constant perturbation H'(r) which 11 exists during time 0 to t. Find the probability for transition from state n to state k and show that it varies simple harmonically.
- A π meson of rest mass m decays into a μ meson of mass m_{μ} and a neutron of mass m_{ν}. Find the 12 total energy of the μ meson.
- 13 Give the energy spectrum of a free Dirac particle and explain pair production and pair annihilation.
- 14 Prove that the parity of spherical harmonics $Y_{l,m}(\theta, \phi)$ is $(-1)^l$.
- 15 Give a thorough description of how a real scalar field is quantized.
- Calculate the percentage contraction of a rod moving with a velocity 0.8c in a direction inclined at 16

60° to its own length.

PART – C

(4 x 12.5 = 50 Marks)

Answer any FOUR questions

- 17 Discuss time-dependent perturbation theory with reference to sinusoidal perturbation and obtain expression for transition probability.
- 18 Discuss in detail the structure of space time.
- 19 Starting from the basic energy equation derive the *Dirac's relativistic equation* for a free particle.
- 20 (a) Discuss the effect of time reversal in the time-dependent Schrodinger equation. (b) If $\psi_+(r)$ and $\psi_-(r)$ are the Eigen functions of the parity operator belonging to even and odd eigenstates, show that they are orthogonal. (6.5+6)
- 21 Describe the quantization of a complex scalar field.
- 22 (a) Discuss the work-energy theorem in relativity. (b) A photon of energy E_0 bounces off an electron at rest. Find the energy E of the outgoing photon, as a function of the scattering angle θ . (4.5+8)

\$\$\$\$\$\$\$